GEOMETRÍA EUCLÍDEA OLÍMPICA

1. Problemas

Problema 1.1. Sea *ABCD* un cuadrilátero tal que:

$$\angle ADB + \angle ACB = 90^{\circ}$$
 $\angle DBC + 2\angle DBA = 180^{\circ}$

demostrar que:

$$(DB + BC)^2 = AD^2 + AC^2$$

Problema 1.2. Sea M un punto en el interior del triángulo ABC de tal forma que

$$AM \cdot BC + BM \cdot AC + CM \cdot AB = 4[ABC]$$

Demostrar que M es el ortocentro del triángulo ABC.

Problema 1.3. Sean A y B dos puntos fijos en el interior de la circunferencia fija ω simétricos respecto a su centro O. Si los puntos M y N varían en ω en el mismo semiplano con respecto a AB, de tal forma que AM|BN, demostrar que $AM \cdot BN$ es constante.

Problema 1.4. Sea ABC un triángulo inscrito en una circunferencia ω . Sea l una recta que pasa por A diferente de AB. Sea L un punto en l tal que AB separa a los puntos C, L. Demostrar que si AL es tangente a ω entonces $\angle LAB = \angle ACB$.

Problema 1.5. Sea ABCD un cuadrilátero convexo tal que $\angle ADB = \angle BDC$. Sea E un punto en AD tal que

$$AE \cdot ED + BE^2 = CD \cdot AE$$

Demostrar que $\angle EBA = \angle DCB$.

Problema 1.6. Sea ABC un triángulo y sean AP, BQ, CR tres cevianas concurrentes. Sean X,Y,Z la intersección de la circunferencia circunscrita de PQR con los lados BC, CA y AB, respectivamente. Demostrar que AX,BY,CZ son concurrentes.

Referencias

- [1] Evan Chen: Euclidean Geometry in Mathematical Olympiads, MAA Press, 2016.
- [2] Titu Andreescu, Michal Rolínek, Josef Tkadlec: Geometry problems from the AwesomeMath Summer Program.